drop

Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

Tuesday, 8 September 2015

CLASS - I X - MATHS : SA-1 : SAMPLE PAPER - 2


   KENDRIYA VIDYALAYA, ASHOK NAGAR, CHENNAI
SUMMATIVE  ASSESSMENT – I ( 2015 ): SAMPLE  PAPER – (2)
MATHEMATICS : CLASS –  I X
       Time allowed : 3 hours                                             Maximum Marks : 90               ***********************************************************                










     **********************************************************                                                                                        





Monday, 31 August 2015

CLASS : IX-MATHS: TERM - I : WORK SHEET AND SAMPLE PAPER FOR SA-1



*****************************************************************************


                                         KENDRIYA VIDYALAYA, ASHOK NAGAR, CHENNAI




















*********************************************************************************

Tuesday, 11 August 2015

CLASS : XI - MATHS : FIRST TERM PROJECT :2015-16


XI - Mathematics: First Term Project Work : 2015-16

Student can select any one of the following to make the project and submit latest by 31 - 08 - 2015 .

1. Prepare a power point presentation on SETS.

2. Prepare a power point presentation on RELATIONS and FUNCTIONS

3. Prepare a power point presentation on TRIGONOMETRY.

4. Make a  mathematical model on relations and functions.

5. Make a mathematical model on Trigonometry.

6. Prepare a chart of trigonometric curves like sinx , cosx etc.

7. Prepare a chart of Trigonometric Formulae.

8. Make an album on Mathematicians who discovered Sets, Relations and Functions.

9. Make an album on Mathematicians who discovered Trigonometry.

10. Prepare a chart on sets, relations and functions.

****************************************************************************

CLASS - XI-MATHS: TERM - I: ASSIGNMENT WORK SHEET

LAST DATE FOR SUBMISSION OF ASSIGNMENT WORKSHEET IS 20 - 08 - 2015 


KENDRIYA VIDYALAYA, ASHOK NAGAR, CHENNAI
CLASS – XI- MATHS : 2015 – 2016 : ASSIGNMENT WORK SHEET (1)
CHAPTER: SETS, RELATIONS AND FUNCTIONS

1.      If A is an empty set,  what is n ( P ( A ) )?

****************************************************************************

Wednesday, 29 July 2015

CLASS : IX - MATHS : ACTIVITY RECORD



     ACTIVITY (4)
OBJECTIVE:  To verify the algebraic identity  a2 – b2  =  ( a + b ) ( a – b ).
Materials Required:  Cardboard, glaze paper, scissor, sketch pen, transparent sheet, fevicol/gum.
Procedure:
(1) Take a cardboard base.
(2) Cut one square ABCD of side “a” units from a green glaze paper and paste it on the cardboard base. (Take a = 9 cm). (Fig (i))
(3) Cut one more square EFGD with side “b” units.(Take b = 3 cm) from a red glaze paper.
(4) Paste the smaller square EFGD on the bigger square ABCD as shown in figure (ii).
(5) Join F to B using sketch pen as shown in fig(ii).
(6) Cut out trapeziums congruent to GCBF and EFBA using transparent sheet and name them GCBF and EFBA respectively as shown in fig (iii).
(7) Arrange these trapeziums as shown in fig (iv).
Observation : From the figure, we observe that
Area of square ABCD – Area of square EFGD= Area of trapezium GCBF + Area of trapezium EFBA
= Area of rectangle GCEA = AE × EC
a2 – b2 =  ( a – b ) ( a + b )
Conclusion: We have verified the identity a2 – b2 =  ( a – b ) ( a + b ) .

*****************************************************************

Tuesday, 7 July 2015

CLASS :XII - MATHS: GROUP -1: COACHING CLASS

DATE: 07 - 07 - 2015

CHAPTER: INVERSE TRIGONOMETRIC FUNCTIONS

************************************************************************

 
*****************************************************************************

Monday, 6 July 2015

XII-MATHEMATICS: GROUP - 1 : COACHING


GROUP-1: PRACTICE QUESTIONS UNDER ICT PROJECT

DATE: 06 - 07 - 2015

CLASS: XII - MATHS:               CHAPTER: FUNCTIONS
******************************************************************************

    1.        If the binary operation  * on the set Z of integers is defined by  a * b =  a + b – 5  , 
      
             then write the identity element for the operation * in Z.
   2.       If the binary operation * on the set Z of integers is defined as  a * b  =  a + b + 2 ,  then                       write the identity element for the operation * in Z.

   3.     Let  *  be a binary operation defined by  a * b =  3 a + 4 b – 2 .  Find  4 * 5.

    4.   Let  * be a binary operation on N defined as a * b = lcm ( a , b ) on N.  Find the 
          identity element    of  * in N.
    5.    Check the injectivity of the function  f : R → R  defined by f ( x ) =  1 + x2.    

      ************************************************************************************************