drop

Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

Wednesday, 29 July 2015

CLASS : IX - MATHS : ACTIVITY RECORD



     ACTIVITY (4)
OBJECTIVE:  To verify the algebraic identity  a2 – b2  =  ( a + b ) ( a – b ).
Materials Required:  Cardboard, glaze paper, scissor, sketch pen, transparent sheet, fevicol/gum.
Procedure:
(1) Take a cardboard base.
(2) Cut one square ABCD of side “a” units from a green glaze paper and paste it on the cardboard base. (Take a = 9 cm). (Fig (i))
(3) Cut one more square EFGD with side “b” units.(Take b = 3 cm) from a red glaze paper.
(4) Paste the smaller square EFGD on the bigger square ABCD as shown in figure (ii).
(5) Join F to B using sketch pen as shown in fig(ii).
(6) Cut out trapeziums congruent to GCBF and EFBA using transparent sheet and name them GCBF and EFBA respectively as shown in fig (iii).
(7) Arrange these trapeziums as shown in fig (iv).
Observation : From the figure, we observe that
Area of square ABCD – Area of square EFGD= Area of trapezium GCBF + Area of trapezium EFBA
= Area of rectangle GCEA = AE × EC
a2 – b2 =  ( a – b ) ( a + b )
Conclusion: We have verified the identity a2 – b2 =  ( a – b ) ( a + b ) .

*****************************************************************

Tuesday, 7 July 2015

CLASS :XII - MATHS: GROUP -1: COACHING CLASS

DATE: 07 - 07 - 2015

CHAPTER: INVERSE TRIGONOMETRIC FUNCTIONS

************************************************************************

 
*****************************************************************************

Monday, 6 July 2015

XII-MATHEMATICS: GROUP - 1 : COACHING


GROUP-1: PRACTICE QUESTIONS UNDER ICT PROJECT

DATE: 06 - 07 - 2015

CLASS: XII - MATHS:               CHAPTER: FUNCTIONS
******************************************************************************

    1.        If the binary operation  * on the set Z of integers is defined by  a * b =  a + b – 5  , 
      
             then write the identity element for the operation * in Z.
   2.       If the binary operation * on the set Z of integers is defined as  a * b  =  a + b + 2 ,  then                       write the identity element for the operation * in Z.

   3.     Let  *  be a binary operation defined by  a * b =  3 a + 4 b – 2 .  Find  4 * 5.

    4.   Let  * be a binary operation on N defined as a * b = lcm ( a , b ) on N.  Find the 
          identity element    of  * in N.
    5.    Check the injectivity of the function  f : R → R  defined by f ( x ) =  1 + x2.    

      ************************************************************************************************